Optimal Bayesian Hashing for Efficient Face Recognition
نویسندگان
چکیده
In practical applications, it is often observed that high-dimensional features can yield good performance, while being more costly in both computation and storage. In this paper, we propose a novel method called Bayesian Hashing to learn an optimal Hamming embedding of high-dimensional features, with a focus on the challenging application of face recognition. In particular, a boosted random FERNs classification model is designed to perform efficient face recognition, in which bit correlations are elaborately approximated with a random permutation technique. Without incurring additional storage cost, multiple random permutations are then employed to train a series of classifiers for achieving better discrimination power. In addition, we introduce a sequential forward floating search (SFFS) algorithm to perform model selection, resulting in further performance improvement. Extensive experimental evaluations and comparative studies clearly demonstrate that the proposed Bayesian Hashing approach outperforms other peer methods in both accuracy and speed. We achieve state-of-the-art results on well-known face recognition benchmarks using compact binary codes with significantly reduced computational overload and storage cost.
منابع مشابه
A Bayesian Hashing approach and its application to face recognition
With the rapid development in the computer vision community, many recent studies show that highdimensional feature representations can produce better accuracies in various image and video content recognition tasks. However, it also brings high costs for both computation and storage. In this paper, we introduce a novel method called Bayesian Hashing, which learns an optimal Hamming embedding to ...
متن کاملUsing Pattern Recognition for Self-Localization in Semiconductor Manufacturing Systems
In this paper we present a new method for self-localization on wafers using geometric hashing. The proposed technique is robust to image changes induced by process variations, as opposed to the traditional, correlation based methods. Moreover, it eliminates the need in training on reference patterns. Two enhancements are introduced to the basic geometric hashing scheme improving its performance...
متن کاملAn Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملGeometric Hashing: Rehashing for Bayesian Voting
Geometric hashing is a model-based recognition technique based on matching of transformation-invariant object representations stored in a hash table. Today it is widely used as an object recognition method in numerous applications. In the last decade a number of enhancements have been suggested to the basic method improving its performance and reliability. Here we consider two of them. One is r...
متن کاملPartial least squares for face hashing
Face identification is an important research topic due to areas such as its application to surveillance, forensics and human-computer interaction. In the past few years, a myriad of methods for face identification has been proposed in the literature, with just a few among them focusing on scalability. In this work, we propose a simple but efficient approach for scalable face identification base...
متن کامل